RSA算法基础->实践

RSA算法基础->实践

文章提交:watercloud (watercloud_at_xfocus.org)

讲讲自己学习RSA中的实践过程,已经对RSA熟悉的看家就不用在此浪费时间了。

<一>基础

RSA算法非常简单,概述如下:

找两素数p和q

取n=p*q

取t=(p-1)*(q-1)

取任何一个数e,要求满足e

在对称加密中:

n d两个数构成公钥,可以告诉别人;

n e两个数构成私钥,e自己保留,不让任何人知道。

给别人发送的信息使用e加密,只要别人能用d解开就证明信息是由你发送的,构成了签名机制。

别人给你发送信息时使用d加密,这样只有拥有e的你能够对其解密。

rsa的安全性在于对于一个大数n,没有有效的方法能够将其分解

从而在已知n d的情况下无法获得e;同样在已知n e的情况下无法求得d。

<二>实践

接下来我们来一个实践,看看实际的操作:

找两个素数:

p=47

q=59

这样n=p*q=2773

t=(p-1)*(q-1)=2668

取e=63,满足eperl -e “foreach $i (1..9999) { print($i),last if $i*63%2668==1 }”

847

即d=847

最终我们获得关键的n=2773,d=847,e=63。

取消息M=244我们看看

加密:c=M**d%n = 244**847%2773

用perl的大数计算来算一下:

C:\Temp>perl -Mbigint -e “print 244**847%2773”

465

即用d对M加密后获得加密信息c=465

解密:

我们可以用e来对加密后的c进行解密,还原M:

m=c**e%n=465**63%2773 :

C:\Temp>perl -Mbigint -e “print 465**63%2773”

244

即用e对c解密后获得m=244 , 该值和原始信息M相等。

<三>字符串加密

把上面的过程集成一下我们就能实现一个对字符串加密解密的示例了。

每次取字符串中的一个字符的ascii值作为M进行计算,其输出为加密后16进制的数的字符串形式,按3字节表示,如01F

代码如下:
#!/usr/bin/perl -w
#RSA 计算过程学习程序编写的测试程序
#watercloud 2003-8-12
#
use strict;
use Math::BigInt;
my %RSA_CORE = (n=>2773,e=>63,d=>847); #p=47,q=59
my $N=new Math::BigInt($RSA_CORE{n});
my $E=new Math::BigInt($RSA_CORE{e});
my $D=new Math::BigInt($RSA_CORE{d});
print “N=$N D=$D E=$E\n”;
sub RSA_ENCRYPT
{
my $r_mess = shift @_;
my ($c,$i,$M,$C,$cmess);
for($i=0;$i < length($$r_mess);$i++) { $c=ord(substr($$r_mess,$i,1)); $M=Math::BigInt->new($c);
$C=$M->copy(); $C->bmodpow($D,$N);
$c=sprintf “%03X”,$C;
$cmess.=$c;
}
return \$cmess;
}
sub RSA_DECRYPT
{
my $r_mess = shift @_;
my ($c,$i,$M,$C,$dmess);

for($i=0;$i < length($$r_mess);$i+=3) { $c=substr($$r_mess,$i,3); $c=hex($c); $M=Math::BigInt->new($c);
$C=$M->copy(); $C->bmodpow($E,$N);
$c=chr($C);
$dmess.=$c;
}
return \$dmess;
}
my $mess=”RSA 娃哈哈哈~~~”;
$mess=$ARGV[0] if @ARGV >= 1;
print “原始串:”,$mess,”\n”;
my $r_cmess = RSA_ENCRYPT(\$mess);
print “加密串:”,$$r_cmess,”\n”;
my $r_dmess = RSA_DECRYPT($r_cmess);
print “解密串:”,$$r_dmess,”\n”;
#EOF

测试一下:
C:\Temp>perl rsa-test.pl
N=2773 D=847 E=63
原始串:RSA 娃哈哈哈~~~
加密串:5CB6CD6BC58A7709470AA74A0AA74A0AA74A6C70A46C70A46C70A4
解密串:RSA 娃哈哈哈~~~

C:\Temp>perl rsa-test.pl 安全焦点(xfoc

us)
N=2773 D=847 E=63
原始串:安全焦点(xfocus)
加密串:3393EC12F0A466E0AA9510D025D7BA0712DC3379F47D51C325D67B
解密串:安全焦点(xfocus)

<四>提高

前面已经提到,rsa的安全来源于n足够大,我们测试中使用的n是非常小的,根本不能保障安全性,我们可以通过RSAKit、RSATool之类的工具获得足够大的N 及D E。通过工具,我们获得1024位的N及D E来测试一下:
n=0x328C74784DF31119C526D180
98EBEBB943B0032B599CEE13
CC2BCE7B5FCD15F90B66EC3
A85F5005DBDCDED9BDFCB3C
4C265AF164AD55884D8278F
791C7A6BFDAD55EDBC4F017
F9CCF1538D4C2013433B383
B47D80EC74B51276CA05B5D
6346B9EE5AD2D7BE7ABFB36
E37108DD60438941D2ED173
CCA50E114705D7E2BC51195
1
d=0x10001
e=0x
E760A3804ACDE1E8E3D7DC
0197F9CEF6282EF552E8CEB
BB7434B01CB19A9D87A310
6DD28C523C29954C5D86B3
6E943080E4919CA8CE0871
8C3B0930867A98F635EB9E
A9200B25906D91B80A47B7
7324E66AFF2C4D70D8B1C6
9C50A9D8B4B7A3C9EE05FF
F3A16AFC023731D8063476
3DA1DCABE9861A4789BD7
82A592D2B1965

设原始信息
M=0x11111111111122222222222233333333333

完成这么大数字的计算依赖于大数运算库,用perl来运算非常简单:

A) 用d对M进行加密如下:
c=M**d%n :
C:\Temp>perl -Mbigint -e ” $x=Math:: BigInt-> bmodpow( 0x11111111111122222222222233
333333333, 0x10001, 0x328C74784DF31119C526D18098
EBEBB943B0032B599CEE13CC2B
CE7B5FCD15F90B66EC3A85F500
5DBDCDED9BDFCB3C4C265AF16
4AD55884D8278F791C7A6BFDA
D55EDBC4F017F9CCF1538D4C2
013433B383B47D80EC74B51276
CA05B5D6346B9EE5AD2D7BE7A
BFB36E37108DD60438941D2ED
173CCA50E114705D7E2BC5119
51);print $x->as_hex” 0x17b287be418c69ecd7c39227
ab681ac422fcc84bb35d8a
632543b304de288a8d4434
b73d2576bd45692b007f3a
2f7c5f5aa1d99ef3866af26
a8e876712ed1d4cc4b293
e26bc0a1dc67e247715ca
a6b3028f9461a3b1533ec
0cb476441465f10d8ad47
452a12db0601c5e8beda
686dd96d2acd59ea89b9
1
f1834580c3f6d90898

即用d对M加密后信息为:
c=0x17b287be418c69ecd
7c39227ab681ac422f
cc84bb35d8a632543b
304de288a8d4434b73
d2576bd45692b007f3
a2f7c5f5aa1d99ef386
6af26a8e876712ed1d
4cc4b293e26bc0a1d
c67e247715caa6b30
28f9461a3b1533ec0c
b476441465f10d8ad4
7452a12db0601c5e8b
eda686dd96d2acd59e
a89b91f1834580c3f6
d90898

B) 用e对c进行解密如下:
m=c**e%n :
C:\Temp>perl -Mbigint -e ” $x=Math::BigInt->bmodpow(0x17b287be418c69ecd7c39227ab
681ac422fcc84bb35d8a632543b304de288a8d4434
b73d2576bd45692b007f3a2f7c5f5aa1d99ef3
866af26a8e876712ed1d4cc4b293e26bc0a1dc67e24
7715caa6b3028f9461a3b1533ec0cb4764414
65f10d8ad47452a12db0601c5e8beda686dd96d2ac
d59ea89b91f1834580c3f6d90898, 0xE760A
3804ACDE1E8E3D7DC0197F9CEF6282EF552E8CEBB
B7434B01CB19A9D87A3106DD28C523C29954C5D
86B36E943080E4919CA8CE08718C3B0930867A98F
635EB9EA9200B25906D91B80A47B77324E66AFF
2C4D70D8B1C69C50A9D8B4B7A3C9EE05FFF3A16A
FC023731D80634763DA1DCABE9861A4789BD782A
592D2B1965, 0x328C74784DF31119C526D18098EBEBB943B0032
B599CEE13CC2BCE7B5FCD15F90
B66EC3A85F5005DBDCDED9BDFCB3C4C265AF164A
D55884D8278F791C7A6BFDAD55EDBC4F017F9CCF
1538D4C2013433B383B47D80EC74B51276CA05B5
D6346B9EE5AD2D7BE7ABFB36E37108DD60438941
D2ED173CCA50E114705D7E2BC511951);print $x->as_hex”
0x11111111111122222222222233333333333
(我的P4 1.6G的机器上计算了约5秒钟)

得到用e解密后的m=0x11111111111122222222222233333333333 == M

C) RSA通常的实现

RSA简洁幽雅,但计算速度比较慢,通常加密中并不是直接使用RSA 来对所有的信息进行加密,最常见的情况是随机产生一个对称加密的密钥,然后使用对称加密算法对信息加密,之后用RSA对刚才的加密密钥进行加密。

最后需要说明的是,当前小于1024位的N已经被证明是不安全的自己使用中不要使用小于1024位的RSA,最好使用2048位的。

watercloud [at] xfocus.org 2005-2-21

zp8497586rq

Comments are closed